
Proceedings of IEEE Visualization 2002. Lawrence Livermore National Laboratory Technical Report UCRL-JC-149277

Efficient Computation of the Topology of Level Sets∗

V. Pascucci K. Cole-McLaughlin

Center of Applied Scientific Computing
Lawrence Livermore National Laboratory

)
 4

 3

 2

 1

 0

0
 0

 0

 2

 4

 6

 8

 10

 12

 10

 14

 16

 18

 20

 18

 20

 18

 16

 14

 12

 10

 8

 6

 4

4

 0

 2

 0

0

 0
0

 0
0

 00

 0
0

 0

 0

 0

 0

 0

 0

 0

 0

 0

isovalue is equal to the number of intersections
(a) The number of components of the isosurface of

of the Contour Tree with the line w=const.

(c) Isosurface of genus 9

(Methane Molecule)

Electron Density Distribution

w

w = 0.2715

w = 0.2398

w = 0.1513

(d) The Contour Tree can reveal hidden
information, such as enclosed components.

(b) The Augmented Contour Tree reports the
topology of the isosurface, here it has genus 3. w = 0.2453

Figure 1: Augmented Contour Tree (ACT) and four isosurfaces (level sets) of the electron density distribution of a methane molecule. Each
arc of the ACT is marked by the second Betti number (equal to twice the number of handles of the surface) of the corresponding isosurface.
The four isosurfaces are computed for isovalues w = 0.2715 (a), w = 0.2453 (b), w = 0.2389 (c) and w = 0.1513 (d). Contour (d) is
shown in two views. The first (standard) view shows only the outer component of the isosurface. The second clipped view shows the second
component in the interior, which presence is reviled by the duble intersection of the horizzontal line w = 0.1513 with the ACT.

ABSTRACT

This paper introduces two efficient algorithms that compute the
Contour Tree of a 3D scalar field F and its augmented version
with the Betti numbers of each isosurface. The Contour Tree is
a fundamental data structure in scientific visualization that is used
to preprocess the domain mesh to allow optimal computation of iso-
surfaces with minimal overhead storage. The Contour Tree can also
be used to build user interfaces reporting the complete topological
characterization of a scalar field, as shown in Figure 1.

The first part of the paper presents a new scheme that augments
the Contour Tree with the Betti numbers of each isocontour in lin-
ear time. We show how to extend the scheme introduced in [3] with
the Betti number computation without increasing its complexity.
Thus, we improve on the time complexity from our previous ap-
proach [10] from O(m log m) to O(n log n + m), where m is the
number of tetrahedra and n is the number of vertices in the domain
of F .

∗This work was performed under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore National Labora-
tory under contract No. W-7405-Eng-48. UCRL-JC-149277

The second part of the paper introduces a new divide-and-
conquer algorithm that computes the Augmented Contour Tree with
improved efficiency. The central part of the scheme computes the
output Contour Tree by merging two intermediate Contour Trees
and is independent of the interpolant. In this way we confine any
knowledge regarding a specific interpolant to an oracle that com-
putes the tree for a single cell. We have implemented this oracle
for the trilinear interpolant and plan to replace it with higher or-
der interpolants when needed. The complexity of the scheme is
O(n + t log n), where t is the number of critical points of F . For
the first time we can compute the Contour Tree in linear time in
many practical cases when t = O(n1−ε).

Lastly, we report the running times for a parallel implementa-
tion of our algorithm, showing good scalability with the number of
processors.

1 INTRODUCTION

Scalar fields are used to represent data in different application areas
like geographic information systems, medical imaging or scientific
visualization.

One fundamental visualization technique for scalar fields is the
display of level sets, that is, sets of points of equal scalar value. For
example, in terrain models isolines are used to highlight regions of
equal elevation. In medical CT scans an isosurface can be used to

Proceedings of IEEE Visualization 2002. Lawrence Livermore National Laboratory Technical Report UCRL-JC-149277

0

1

2

3

4
5

1

3

6

7

9

3

10

8

11

12

0

1

5

9
10

3

11

12

(a) (b)

4

6

4

Figure 2: (a) 2D scalar field (terrain) represented as a triangula-
tion with elevation values associated with each vertex. The critical
points are marked with colored disks: maxima in red, saddles in
green and minima in purple. A set of representative level sets (iso-
lines) are drawn in blue. (b) Corresponding Contour Tree.

show and reconstruct the separation between bones and soft tissues.
The domain of a scalar field is typically a geometric mesh, and

the field is provided by associating each vertex in the mesh with a
sampled scalar value. If the mesh is a simplicial complex then a
piecewise linear function is naturally defined by interpolating lin-
early, within each simplex, the scalar values at the vertices. If the
mesh is a rectilinear grid then a piecewise trilinear function is natu-
rally defined by interpolating, within each cell, the scalar values at
the vertices.

The Contour Tree is a data structure that represents the relations
between the connected components of the level sets in a scalar field.
Two connected components that merge together (as one continu-
ously changes the isovalue) are represented as two arcs that join
at a node of the tree. The pre-computation of the Contour Tree al-
lows one to collect structural information relative to the isocontours
of the field. This can be used, for example, to speed up the com-
putation of isosurfaces by computing seed sets over the Contour
Tree data structure as in [13]. The display [1] of the Contour Tree
provides the user with direct insight into the topology of the field
and reduces the user interaction time necessary to “understand” the
structure of the data. Figure 1 shows an example of how informa-
tion can be extracted from the Contour Tree display.

The first efficient technique for Contour Tree computation in 2D
was introduced by de Berg and van Kreveld in [5]. The algorithm
proposed has O(n log n) complexity. A simplified version, with
the same complexity in 2D and O(m2) complexity in higher di-
mensions, was proposed by van Kreveld et al. in [13]. This new
approach is also used as a preprocessing step for an optimal iso-
contouring algorithm. It computes a small seed set from which any
contour can be tracked in optimal running time. The approach has
been improved by Tarasov and Vyalyi [12] achieving O(m log m)
complexity in the 3D case by a three-pass mechanism that allows
one to resolve the different types of criticalities. Recently Carr,
Snoeyink and Axen [3] presented an elegant extension to any di-
mension based on a two-pass scheme that builds a Join Tree and
a Split Tree that are merged into a unique Contour Tree. The ap-
proach achieves O(m + n log n) time complexity.

One fundamental limitation of the basic Contour Tree is the lack
of additional information regarding the topology of the contours. In
high pressure chemical simulations [11], hydrogen bonds between
the atoms cannot be represented in a traditional way but can be char-
acterized by isosurfaces of potential fields. The Contour Tree pro-
vides important information regarding the clustering of atoms into

molecules but fails to discriminate between linear chains and closed
rings (or more complex structures), which have different physical
behaviors. In [10] we introduced the first efficient algorithm for the
computation of the Betti numbers of all the level sets of a scalar
field in O(m log m) time.

In this paper we introduce an extension of the algorithm in [3]
that allows one to add the Betti numbers of each contour while
maintaining the simplicity of the scheme and the efficient O(m +
n log n) time complexity. We also introduce a new divide and con-
quer scheme for the computation of the Contour Tree. The basic
idea is to compute Join/Split Trees by recursively combining the
same trees computed for two halves of the mesh. This approach al-
lows one to achieve better modularity by confining any knowledge
of a specific interpolant to an oracle that computes the tree for a
single cell (in the Appendix we report the oracle for the trilinear
interpolant). In our analysis of the scheme we show a time com-
plexity of O(n + t log n), where t is the number of critical points
in the field.

The algorithm is also easy to parallelize. Running times from
our parallel implementation specialized for rectilinear grids shows
good scalability with the number of processors.

2 THE CONTOUR TREE

Consider a scalar field F defined as a pair (f,M), where f is a
real valued function and M is the domain of f . In the following
two sections of this paper the domainM is assumed to be a simpli-
cial complex with n vertices and m cells. In Section 5 the domain
M is assumed for simplicity to be a rectilinear grid (the results
presented generalize directly to unstructured meshes). Within each
simplex ofM the function f is the linear interpolation of its val-
ues at the vertices (trilinear for grid cells). In other words, the field
F is completely defined by the meshM = {v1, . . . , vn} and the
set of scalar values {f1, . . . , fn}, where fi = f(vi). SinceM is
connected (or processed one connected component at a time) the
range of f is a simple closed interval r = [fmin, fmax], where
fmin = min {f1, . . . , fn} and fmax = max {f1, . . . , fn}.

For simplicity of presentation, M is also assumed to be home-
omorphic to a 3-ball. One fundamental way to study the field
F is to extract its level sets. For a given scalar w the level set
L(w) is defined as the inverse image of w onto M through f :
L(w) = f−1(w). We call each connected component of the level
set L(x) a contour. One aspect that is well understood in Morse
theory [9] is the evolution of the homology classes of the contours
of F while x changes continuously in r. The points at which the
topology of a contour changes are called critical points and the cor-
responding function values are called critical values. The critical
points are usually assumed to be isolated. This assumption can be
enforced by small (symbolic) perturbations of the function values
{f1, . . . , fn} as discussed in Section 3.

Here this perturbation procedure is weakened by simply assum-
ing that the function values {f1, . . . , fn} are sorted from the small-
est to the largest so that i < j ⇒ fi ≤ fj . This can be enforced
with an O(n log n) preprocessing step. In the following of this pa-
per the order of the fi is used to resolve non-isolated criticalities.

An intuitive way to characterize the Contour Tree is given by the
following definition:

The Contour Tree ofF is the graph obtained by continuous con-
traction of each contour of F to a single point. Adjacent contours
are contracted to adjacent points. Distinct contours are contracted
to distinct points.

Note that the Contour Tree is not a complete Morse graph of F
since the topological changes of a single contour are not recorded.
Figure 2 shows a 2D scalar field with the associated Contour Tree.

2

Proceedings of IEEE Visualization 2002. Lawrence Livermore National Laboratory Technical Report UCRL-JC-149277

3 CONTOUR TREE COMPUTATION

This section summarizes the main result of [3], which is an elegant
and efficient algorithm for the computation of the Contour Tree in
any dimension. We refer to [3] for a formal proof of the correctness
of the scheme.

The algorithm is divided into three stages: (i) sorting of the ver-
tices in the field, (ii) computing the Join Tree (JT) and Split Tree
(ST), and (iii) merging the JT with the ST to build the CT .
Sorting vertices. The vertices of the mesh are ordered by increas-
ing function value in O(n log n) time using any standard sorting
technique. It is important to note that the remainder of the algo-
rithm relies on the assumption that there are no two vertices with
the same function value. Typical input fields do not satisfy this as-
sumption, therefore we impose a symbolic perturbation of the func-
tion values by replacing the test f(vi)

?
< f(vj) with the test i ?

< j.
After sorting, this integer comparison solves consistently the ties
when f(vi) = f(vj). In the following we also use the symbol i for
the node of CT , JT or ST that corresponds to vi.
Computing the JT and the ST . The computation of the JT
and of the ST is performed in two sweeps through the data in
forward and reverse vertex order. The JT is built incremen-
tally with a tree data-structure supporting the obvious functions
NewTree(), AddNode(XT, i) and AddArc(XT, i, j). Implicitly
the JT tracks the history of the UNION operations of a UNION-
FIND data-structure over the set of vertices in the mesh with respec-
tively increasing and decreasing function value. NewSet(UF, i)
creates the new set {i}, with reference node i. If k belongs to the
set i then Find(UF, k) returns i in constant time. Union(UF, i, j)
redirects the pointers of all the elements in j to point to i, if i has
larger cardinality than j (vice versa if |i| < |j|).The Boolean func-
tion IsMin(F , vi) returns true if vi is a local minimum in F .

JoinTree(vertices, edges)
1 JT= NewTree()
2 UF= NewUF()
3 for i = 0 to n− 1 do:
4 AddNode(JT, i)
5 if IsMin(F , vi) then NewSet(UF, i)
6 for each edge vivj with j < i do:
7 i′ ← Find(UF, i)
8 j′ ← Find(UF, j)
9 if j′ �= i′ then AddArc(JT, i′, j′)

10 Union(UF, i′, j′)
12 return JT

Each vertex vi is associated with two lists UpAdj, of incident edges
(vi, vj) with j > i, and DownAdj of incident edges (vi, vj) with
j < i. In this way IsMin(F , vi) can test in constant time if i is a
minimum (DownAdj is empty) and the loop on line 6 directly scans
the elements of DownAdj.

The routine SplitTree has the same structure as JoinTree. The
only differences are as follows: (i) the main loop (line 3) would
scan the vertices in reverse order, (ii) the if statement in line 5 would
test IsMax instead of IsMin and (iii) the inner loop (line 6) would
consider the edges (vi, vj) with j > i. These routines are shown
in [3] to have worst case time complexity of O(m + t log t).
Merging the JT with the ST . In the last stage of the algorithm
the JT is merged with the ST to build the CT . The upper leaves
of the JT and the lower leaves of the ST are successively removed
from both trees and added to the CT . Consequently the data struc-
ture representing the JT and the ST has to support the additional
operations DelNode(XT, i), and Leaf(XT, i). DelNode(XT, i)
removes the node i from XT while maintaining the consistency of
XT by removing any arc ij and replacing any pair of arcs ij, ik
with the arc jk. The Boolean function Leaf(XT, i) tests whether
the node i is a leaf of XT . More specifically Leaf(JT, i) is true

Bifurcations

Minimum

Maxima
x=4.0

x=2.0

x=0.0

Topol. change

(1,0,1)

(1,2,1)

(1,0,1)

(1,0,1) (1,0,1)(1,0,1)

2<x<4

1.2<x<2

x=1.2

0<x<1.2

(a) (b)

Figure 3: (a) Information provided by the standard CT for a sim-
ple scalar field. (b) The added information provided by the ACT
provides a better understanding of the structure of each contour.

if the JT has no arc ij with j < i, and Leaf(ST, i) is true if the
ST has no arc ij with j > i. GetAdj(XT, i) returns a vertex j
if XT contains the arc ij. A queue data structure is used to store
pairs [NodeName, TreeName] and is managed with the func-
tions NewQ() (to create a queue), Get(Q) (to get a pair from the
queue Q) and Put(Q, [i, XT]) (to add a pair to Q).

ContourTree(JT, ST)
1 Q← NewQ()
2 CT ← NewTree()
3 for i = 0 to n− 1 do:
4 AddNode(CT, i)
5 if Leaf(JT, i) then Put(Q, [i, JT])
6 if Leaf(ST, i) then Put(Q, [i, ST])
7 while [i, XT]← Get(Q) do:
8 j ← GetAdj(XT, i)
9 DelNode(ST, i)

10 DelNode(JT, i)
11 AddArc(CT, ij)
12 if Leaf(XT, j) then Put(Q, [j, XT])
13 return CT

One can minimize the size of the CT by deleting any node that has
exactly degree two with DelNode. This reduction to a minimal CT
can be done directly during the construction of the JT and of the
ST . This makes the algorithm slightly more complicated but has
the advantage of reducing the size of the intermediate storage.

This last stage of the algorithm has O(n) complexity. Overall the
algorithm for constructing the CT has O(m+n log n) complexity,
since t is never greater than n.

4 BETTI NUMBERS COMPUTATION

This section introduces a modification to the function ContourTree
that provides a more detailed characterization of the contours of a
scalar field. The output generated by the modified function is the
Augmented Contour Tree (ACT), as defined in [10], which has a
triple (β0, β1, β2) of Betti numbers associated to each arc of the
tree. The k-th Betti number βk of a simplicial complex is the rank
of its k-dimensional homology group. We restrict our attention to
level sets of 3D scalar fields, which are 2D complexes. In this case
only the first three Betti numbers may be non-zero. Their intuitive
interpretation is as follows: β0 is the number of connected com-
ponents, β1 is the number of independent tunnels, and β2 is the
number of voids enclosed by the surface.

Figure 3(a) shows the minimal CT for a simple scalar field that
has one minimum at isovalue x = 0. The level set f−1(0) is a
single contour coincident with the boundary of the mesh (on the
bottom left). As the isovalue is continuously increased, the level

3

Proceedings of IEEE Visualization 2002. Lawrence Livermore National Laboratory Technical Report UCRL-JC-149277

v v

(a) (b)

Figure 4: Comparison between two level sets (isolines in blue) of
a 2D scalar field. (a) shows an isoline of isovalue f(v) − ε. (b)
shows an isoline of isovalue f(v) + ε. The difference between
combinatorial structure of the two isolines is confined within the
star of simplices incident to v.

set splits into four contours at isovalue x = 2 (on the middle left).
Each contour shrinks to a single point and disappears at the maxi-
mum isovalue x = 4 (on the top left). Figure 3(b) shows the mini-
mal ACT for the same scalar field. The added information allows
the user to observe that the level set at the minimum is topologically
a sphere (β0 = 1, β1 = 0, β1 = 1) which turns into a toroidal con-
tour (β0 = 1, β1 = 2, β1 = 1) at isovalue x = 1.2. The toroidal
contour then splits into four components, each being a topological
sphere.

In general the ACT has the same structure of the CT since
it has the same number of non-degree-two nodes (extrema and
merge/split points) and the same connectivity among them. The
main difference is that the CT , in its minimal form, has no nodes of
degree two. In contrast the ACT requires degree two nodes at the
isovalues where a contour changes its topology without splitting or
merging. Because of these added nodes, each arc of the ACT is as-
sociated with a family of contours that are homologically equivalent
and hence qualified by the same set of Betti numbers. Moreover, the
contours associated with an arc contain no critical points and the
Betti numbers are restricted as follows: (i) β0 is always 1, (ii) β2

is 0 for surfaces with boundary (open) and is 1 for surfaces without
boundary (closed). Once β0 and β2 are determined we can compute
the value of β1 using its relationship with the Euler characteristic
χ = β0 − β1 + β2. Given a triangulated surface, the Euler number
χ is defined as the number of vertices minus the number of edges
plus the number of faces. In addition to computing the Euler num-
ber, for each contour we count the number of boundary edges (be).
In this way we can determine β2 by checking if be > 0 and then use
the Euler formula to compute β1 = β0 + β2 − χ. In a preliminary
stage we compute, for each vertex v, the information necessary to
determine the difference between the Euler number of the level set
L(f(v)+ε) and the Euler number of the level set L(f(v)−ε) where
ε > 0 is an arbitrarily small number (remember that f(v) = f(w)
implies v = w). Figure 4 shows two such level sets for a 2D scalar
field. The vertices with function value greater than f(v) are marked
⊕ and the vertices with function value smaller than f(v) are marked
�. Any simplex containing both vertices of type⊕ and type� give
the same contribution to the Euler numbers of the two contours and
hence are not considered. The only simplices that are relevant are
those containing v and only vertices of type � or those containing
v and only vertices of type ⊕. We call the lower star of v the set of
simplices of the first type (v,�, . . . ,�) and the upper star the set of
simplices of the second type (v,⊕, . . . ,⊕). For both stars we com-
pute the respective Euler numbers LS and US (number of vertices
minus number of edges plus number of triangles minus number of
tetrahedra). We also count the difference ∆be between the bound-
ary edges of L(f(v)− ε) and L(f(v) + ε). This is summarized in
the following algorithm:

NP HiPIP Rho Engine Foot
64x64x64 128x128x128 256x256x110 125x255x176

1 1.0000 1.0000 1.0000 1.0000
2 1.9754 1.9801 1.9988 1.9993
4 3.7633 3.9168 3.9445 3.8986
8 7.4461 7.6365 7.3503 7.0672
16 13.949 15.457 14.302 12.864
32 26.465 28.460 27.132 20.797

Table 1: Performance results for four sample data-sets. The values
given are the speedups achieved in computing the ACT on NP pro-
cessors as compared to the case NP=1. The ideal speedup would be
NP times faster.

LUStars(vertices, edges, triangles, tetrahedra)
1 for i = 0 to n− 1 do:
2 LSi = USi = 1
3 ∆bei = 0
4 for each edge (vi, vj) with i < j do :
5 LSj ← LSj − 1
6 USi ← USi − 1
7 for each triangle (vi, vj , vk) with i < j < k do :
8 LSk ← LSk + 1
9 USi ← USi + 1

10 if (vi, vj , vk) is a boundary triangle then:
11 ∆bek ← ∆bek − 1
12 ∆bei ← ∆bei + 1
11 for each tetrahedron (vi, vj , vk, vl) with i < j < k < l do :
12 LSl ← LSl − 1
13 USi ← USi − 1
14 return(LS, US, ∆be)

From a CT that contains all the nodes we build the corresponding
ACT . We call χij the Euler number of the contour associated with
the arc ij of the CT . For any fixed i the summation

∑
χij , with

j < i, is the sum of the Euler numbers of the contours of L(f(vi)−
ε) which intersect the star of vi. Similarly we denote by beij the
number of boundary edges of the contour associated with the arc
ij.

We consider, at a generic node i, the relation between LSi, USi

and the Euler numbers of the contours associated with the arcs in-
cident to i. In particular, each edge, triangle and tetrahedron in the
lower star of vi produces one vertex, edge and face, respectively,
in some contour of L(f(vi) − ε). In the same way each edge, tri-
angle and tetrahedron in the upper star of vi produces one vertex,
edge and face, respectively, in some contour of L(f(vi)+ε). Since
these two terms are the only difference between the Euler numbers
of L(f(vi)− ε) and of L(f(vi) + ε) we can write:

∑
ij|j<i

χij + LSi =
∑

ij|j>i

χij + USi. (1)

Overall we have a set of n linear equations, one for each node
of the ACT , with n − 1 unknowns χij . To solve this system we
define n artificial variables χi that are initially set to zero. In this
way one can rewrite the linear equations as follows:

χi +
∑

ij|j<i

χij + LSi =
∑

ij|j>i

χij + USi. (2)

A similar argument holds for the count of the boundary edges
beij of each contour. We define an array of auxiliary variables bei

that are initially set to zero and satisfy the following equations:

bei +
∑

ij|j<i

beij + ∆bei =
∑

ij|j>i

beij . (3)

We solve the systems of linear equations defined by (2) and (3)
with the procedure AugmentedContourTree, which incrementally

4

Proceedings of IEEE Visualization 2002. Lawrence Livermore National Laboratory Technical Report UCRL-JC-149277

moves an arc ij from the CT to the ACT each time the correspond-
ing value of χij can be determined (the function Degree(XT, v)
returns the degree of the node v in XT):

AugmentedContourTree(CT−with−all−nodes)
1 Q← NewQ()
2 ACT ← NewTree()
3 for i = 0 to n− 1 do:
4 χi ← 0
5 bei ← 0
6 AddNode(ACT, i)
7 if Degree(CT, i) = 1 then Put(Q, i)
8 while i← Get(Q) do:
9 j ← GetAdj(CT, i)

10 AddArc(ACT, i, j)
11 if i < j then δ ← +1 else δ ← −1
12 χij ← δ(χi − USj + LSj)
13 beij ← δ(bei + ∆bei)
14 χj ← χj + δ · χij

15 bej ← bej + δ · beij

16 DelNode(CT, i)
17 if Degree(CT, j) = 1 then Put(Q, j)
18 return ACT

Note that the ‘while loop’ in line 8 of AugmentedContourTree has
the same structure of the ‘while loop’ in line 7 of ContourTree.
Therefore, one can compute directly the Euler numbers χij and
merge the JT with the ST in the same loop. The Betti numbers
can also be added at the same time. For completeness we report the
function that computes the Betti numbers as a post-processing:

BettiNumbers(ACT)
1 for each arc ij of ACT do:
2 β0,ij ← β2,ij ← 1
3 if beij �= 0 then β2,ij ← 0
4 β1 ← β0 + β2 − χij

ACT Reduction. The following function, Reduce, removes all
of the non-critical points from the ACT in order to reduce it to its
minimal form. The test is based on the critical point theorem in [2]
and can detect the critical points in constant time once the arrays
LS and US have been computed. Note that this removal of non-
critical points can be done during the computation of the ACT ,
reducing the necessary intermediate storage:

Reduce(ACT)
1 for i = 0 to n− 1 do:
2 if LSi = USi = 0
3 DelNode(ACT, i)

Correctness. The correctness of the routines LUStars and Bet-
tiNumbers derives directly from the definitions of the parameters
computed. To prove the correctness of AugmentedContourTree
we show that there are two invariants that remain true at each it-
eration. The invariants are the systems of equations (2) and (3).
Initially both systems are true by definition, since all the χi and the
bei are set to zero. We focus only on equation (2) since the same
argument holds for (3).

At each iteration of the while loop (line 8) a leaf i is selected
from the CT together with its incident arc ij. Therefore the ith
equation (2) has only one unknown, χij . χij is computed with the
explicit formula χij = LSi−USi+χi, if j > i, or with the explicit
formula χij = USi − LSi − χi, if j < i. The node i and the arc
ij are then removed from CT invalidating the jth equation of (2)
since the term χij is no longer present. We restore its correctness
by adding the value of χij to χj , if j > i (or subtracting if j < i).
Thus, after each iteration the CT is reduced by an arc, while the
systems (2) and (3) remain true.

At the end of the loop the tree CT has no arcs and all the terms
χij and beij are computed.
Complexity. The complexity of the procedure LUStars is O(m)
while the complexity of AugmentedContourTree and BettiNum-
bers is O(n). Overall the computation of the ACT with the Betti
numbers remains O(m + n log n). This is an improvement over
the previous O(m log m) achieved in [10] since m can be as big as
O(n2).

5 DIVIDE AND CONQUER STRATEGY

This section introduces a new way to compute the JT and the
ST using a divide-and-conquer strategy. This divide-and-conquer
strategy relies on the possibility of dissecting M into two, nearly
equal, halves separated by a boundary of size O(n2/3). This dissec-
tion can be computed for unstructured finite element meshes [8, 7]
in O(n) time. For simplicity of presentation and implementa-
tion (straightforward computation of the dissection), we restrict our
analysis to the case of scalar fields F = (f,M) whereM is a rec-
tilinear mesh of dimensions nx×ny×nz . This is the type of mesh
that typically has the largest number of vertices (i.e., the type used
in the largest simulations or generated by high resolution MRI/CT
scanning devices). In this case the function f is defined within each
cell as the trilinear interpolation of the field values at the eight ver-
tices. In this framework we cannot use the algorithm ContourTree
since it assumes properties that are specific to a piecewise linear
interpolant. For example, the trilinear interpolant admits critical
points in the interior of a cell, a condition not allowed by Con-
tourTree. Triangulating the cells of the grid is usually not an op-
tion for large data-sets, especially because the same topology can-
not be reproduced in general unless several more vertices are added
to each cell of the mesh.

Our approach overcomes this problem by assuming an oracle
OracleJT(F ,M) that returns the JT of F ifM is a single cell.
We have implemented such an oracle for the trilinear interpolant
on a cube (see Appendix). To extend the scheme to data-sets with
other types of interpolants, for example a triquadratic interpolant,
requires only to replace the function OracleJT. OracleST(F ,M)
is simply OracleJT(−F ,M).
Recursive algorithm. The recursive algorithm has the same struc-
ture of a merge sort scheme with the added feature that non-critical
vertices are removed as soon as possible. This removal provides
an output sensitive character to the algorithm and improves both its
time complexity and its space complexity:

RecursiveJT(F ,M)
1 if Dimensions(M) = (2, 2, 2) then
2 return OracleJT(F ,M)
3 [M1,M2]← Split (M)
4 JT1 ← RecursiveJT (F ,M1)
5 JT2 ← RecursiveJT (F ,M2)
6 JT ← MergeJT(JT1, JT2)
7 return Reduce(JT)

The function Split (M) divides in constant time the domain of the
mesh into two approximately equal meshesM1 andM2. In par-
ticular, if M has size (nx, ny, nz), with nx ≥ ny ≥ nz , then
M1 has size (n′

x, ny, nz) and M2 has size (n′′
x, ny, nz), where

n′
x = �nx/2	 and n′′

x = nx + 1− n′
x.

Tree merging. The routine MergeJT below combines the Join
Trees of the two halves of the mesh using a UnionFind data-
structure in the same way the routine JoinTree computes the global
JT from the edges of the mesh. Two key differences need to be
highlighted. First, MergeJT sorts the input nodes in linear time
since JT1 and JT2 have their nodes already sorted. In particu-
lar one linear scan through the input trees sorts the nodes and at

5

Proceedings of IEEE Visualization 2002. Lawrence Livermore National Laboratory Technical Report UCRL-JC-149277

the same time merges the duplicate nodes, which correspond to
vertices on the surface M1 ∩ M2. This task is performed by
MergeNodesSorted, which also returns the total number of dis-
tinct nodes. Second, MergeJT copies verbatim into JT the inde-
pendent portions of JT1 and of JT2. This is done in linear time.
The UnionFind data-structure is used starting at the nodes that cor-
respond to local minima of the scalar field restricted toM1 ∩M2

(F|M1∩M2). The test for minima is performed by IsMin in con-
stant time.

MergeJT(JT1, JT2)
1 JT= NewTree()
2 UF = NewUF()
3 k ←MergeNodesSorted(JT1, JT2))
4 for each node i = 0 to k − 1 do:
5 AddNode(JT, i)
6 if IsMin(F|M1∩M2 , i) then NewSet(UF, i)
7 for each edge vivj with j < i do:
8 i′ ← Find(UF, i)
9 j′ ← Find(UF, j)

10 if j′ �= i′ then AddArc(JT, i′, j′)
11 Union(UF, i′, j′)
12 return JT

Let n be the number of vertices of M1 and M2, k be the num-
ber of nodes of JT1, JT2 and t be the number of the minima
of F|M1∩M2 . The complexity of MergeJT is O(n2/3 + k +

t log t). Since t = O(n2/3) we can rewrite the complexity as
O(n2/3 log n + k).
ACT Reduction. As shown in Section 4, Reduce can test if a
point i is non-critical simply by looking at LSi and USi. In this
context IsRegular performs the same combinatorial test modified
for the interpolant used by OracleJT. Note that the last call to Re-
duce should be modified to not check IsInterior, so that all of the
non-critical points are removed. Otherwise non-critical points on
the boundary of the mesh would remain in ACT :

Reduce(ACT)
1 for i = 0 to n do:
2 if IsInterior(i) and IsRegular(i)
3 DelNode(ACT, i)

Complexity. To determine the complexity of RecursiveJT we an-
alyze separately the cost of dealing with the interior critical points
and the cost of dealing with the boundaries that are artificially in-
troduced by the subdivision process and removed by MergeJT.

We assume that n is the number of cells of M and that Split
partitions M into two equal halves of size n/2. Therefore, the
number of levels in the recursion tree of RecursiveJT is log n.

The function OracleJT, which takes constant time, is invoked
exactly n times (once per cell), accounting for a Θ(n) time com-
plexity.

As the sub-meshes are merged together boundary points become
interior points. In particular, every point is processed by Reduce
in constant time. Moreover, any point that fails the test IsRegular
is also processed in constant time by MergeJT at every level of the
recursion. If F has t critical points we spend O(n + t log n) time
to find and process them.

To analyze the cost of dealing with the boundaries we apply
the master theorem of recursive functions reported on page 62
of [4]. The theorem allows one to determine the complexity of
a function T (n) on the basis of the recurrence formula T (n) =
2T (n/2) + f(n) and the complexity of the function f(n). In this
case T (n) is the complexity of our recursive algorithm and f(n) is
the complexity of MergeJT with reference to the boundary points
only (the other points have already been accounted for). As dis-
cussed earlier the highest cost in MergeJT is due to the Union-
Find, which we have set conservatively to O(n2/3 log n). This

means that f(n) has complexity O(n1−ε) for some ε and hence
T (n) = Θ(n). In conclusion, the complexity of RecursiveJT is
O(n + t log n). For practical cases where t is less than linear we
have t = O(n1−ε), which means the overall complexity is O(n).

For the case of large data-sets it is also crucial to minimize the
cost of any auxiliary storage. Beyond linear storage in the size t of
the output, RecursiveJT keeps a storage proportional to the bound-
ary of the mesh. Overall the auxiliary storage is O(t + n2/3).

Note that the analysis above applies for general unstructured
meshes since it is possible to compute in O(n) time a dissection
ofM with boundary of size O(n2/3), as shown in [7, 8].

6 PRACTICAL RESULTS

This section reports some practical results from our implementation
of the the two algorithms discussed in Sections 4 and 5. We first
present an example of the Augmented Contour Tree of the scalar
field obtained for a simple molecular data-set (methane) that shows
surprisingly intricate topological structures. Next we compare the
timings for the computation on data-sets of five different sizes.
Methane. We consider the topological analysis of a small scalar
field computed by ab initio simulation conditions for the methane
molecule. We have computed the ACT and displayed it using the
graph drawing tool graphviz [6]. The top portion of this graph is
shown in Figure 1, along with several isosurfaces, and their cor-
responding points in the ACT . We focus on this portion of the
data-set since it is known that the simulation becomes less reliable
at lower densities.

The Methane data-set, which is on a 32x32x32 rectilinear grid,
is the simplest non-trivial data-set we explored. It is a nice exam-
ple, since the visualization of the tree is possible by conventional
means. This gives us a good way of exploring the possibilities of
using the ACT as an interface for data understanding. We see from
the isosurfaces (b), (c) and (d) that there is useful information sum-
marized in the ACT that is not obvious from the visualization. The
isosurfaces (b) and (c) can be seen immediately to have β1 = 6
and β1 = 18 respectively, which implies that their respective genus
g = 3 and g = 9 since g = β1/2 for closed surfaces. In the isosur-
face (d) the initial visualization shows a single surface, whereas the
ACT shows 2 distinct components. Only after adding a clipping
plane the second component is shown to be enclosed within the
first. Performance. We have implemented in parallel the divide-
and-conquer ACT algorithm on a shared memory platform. This is
done by creating two processes at each recursion that compute Join
and Split Trees for each half of the mesh. The recursion become
sequential as soon as the desired number of processes is reached.
Table 1 summarizes running times for four data-sets of sizes scal-
ing from thousands to millions of vertices. The speedup relative to
the sequential case is reported in Figure 5, compared to the ideal
linear speedup (top line in the chart).

One can see that the speedup obtained in the parallel implemen-
tation scales nearly linearly. The coarse grained subdivision in our
method is easily implemented in parallel. Each processor becomes
responsible for a connected subregion of the mesh and works com-
pletely independently of the other processes. The only communica-
tion necessary is for a child process to return the JT and ST that it
computed to its parent.

7 CONCLUSIONS

We have introduced two schemes for the computation of the ACT
for scalar fields defined on simplicial meshes and on rectilinear
grids. The first scheme is an extension of the algorithm proposed
in [3] with the computation of the Betti numbers.

6

Proceedings of IEEE Visualization 2002. Lawrence Livermore National Laboratory Technical Report UCRL-JC-149277

1

10

100

1 2 4 8 16 32

S
pe

ed
up

Number of processors.

 Speedup of the parallel
 Contour Tree computation.

Ideal
HiPIP

Rho
Engine

Foot

Figure 5: Practical speedups obtained in the parallel implementa-
tion for four data-sets of different sizes, compared with the ideal
linear speedup.

The second contribution is a divide-and-conquer scheme for rec-
tilinear grid domains. The complexity of this second scheme is
improved further to O(m + t log n) where t is the number of crit-
ical points in the mesh. Moreover, we demonstrate good practical
scalability of a simple parallel implementation of this algorithm.

The comparison between the two schemes is interesting even if it
applies to different classes of inputs. In particular, the divide-and-
conquer approach seems to present several advantages, especially
for the processing of large data-sets. For instance, the auxiliary stor-
age is kept as low as O(n2/3 + t). In contrast the original scheme
can have O(n) auxiliary storage since the union find processing
needs to maintain auxiliary information on a set of vertices as large
as the largest isosurface in the mesh.

In principle there seem to be no major problems preventing
the application of the divide-and-conquer scheme to unstructured
meshes, but further investigation is necessary to verify if the same
performance benefits can be guaranteed in general.

The simple task of drawing the CT has become a major problem.
For data-sets that we have successfully processed we already obtain
trees that current graph drawing tools cannot handle. Still we plan
to work on data-sets that are orders of magnitude larger. In such
cases the development of interfaces that display the CT will present
a major challenge.

REFERENCES

[1] C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum. In IEEE
Visualization ’97, pages 167–175.

[2] T. Banchoff. Critical points and curvature for emmbedded polyhedra. Differen-
tial Geometery, 1(1):245–256, 1967.

[3] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions.
Computational Geometry Theory and Applications, 2002.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

[5] M. de Berg and M. J. van Kreveld. Trekking in the alps without freezing or
getting tired. Algorithmica, 18(3):306–323, July 1997.

[6] J. Ellson, E. Gansner, E. Koutsofios, J. Mocenigo, S. North, , and G. Woodhull.
Graphviz. AT&T Research .
http://www.research.att.com/˜north/graphviz/.

[7] Gary L. Miller, Shang-Hua Teng, William P. Thurston, and Stephen A. Vavasis.
Automatic mesh partitioning. In Graph Theory and Sparse Matrix Computation,
number 56 in The IMA Volumes in Mathematics and its Applications, pages
57–84. Springer-Verlag, 1993.

[8] Gary L. Miller, Shang-Hua Teng, William P. Thurston, and Stephen A. Vavasis.
Geometric separators for finite-element meshes. SIAM J. Scientific Computing,
19(2):364–386, Mar 1998.

lx

ly s

C

Am

A

B

Bm1

Bm2

BM1

BM2

CM

Cm

AM

Am

AM
BM1

BM2

Bm Cm

CM

s

(a) (b)

Figure 6: (a) 2D bilinear function. The saddle point s is marked
with the symbol ◦. The horizontal line ly and the vertical line lx
have constant function value and intersect at s. The orientation of
the edges of the rectangles A, B, and C is along growing F . (b)
Split trees of F restricted to the rectangles A, B and C. Bm is the
minimum between Bm1 and Bm2.

[9] J. Milnor. Morse Theory, volume 51 of Annals of Mathematics Studies. Princeton
University Press, 1963.

[10] V. Pascucci. On the topology of the level sets of a scalar field. In 12th Canadian
Conference on Computational Geometry, pages 141–144, August 2001.

[11] E. Schwegler, G. Galli, and F. Gygi. Water under pressure. Physical Review
Letters, 84(11):2429–2432, 2000.

[12] S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in 3d in
O(n log n) steps. In Proceedings of the Fourteenth Annual Symposium on
Computational Geometry, pages 68–75, Minneapolis, June 1998. ACM.

[13] M. van Kreveld, R. van Oostrum, C.L. Bajaj, V. Pascucci, and D.R. Schikore.
Contour trees and small seed sets for isosurface traversal. In Proceedings of
the 13th Annual Symposium on Computational Geometry, pages 212–220, June
1997.

APPENDIX

We consider the problem of computing the Merge and Split Trees
for a cell with a trilinear interpolant. Our analysis is limited to
the Split Tree since the Join Tree is computed symmetrically. We
show that in the 2D case there are only two possible Split Trees and
in 3D there are only four possible Split Trees. In both cases the
topology of the Split Tree is completely determined by the number
of maxima present in the cell.

Bilinear Interpolant on a Rectangle
Consider a bilinear function F : R2 → R, defined analytically by
F (x, y) = axy + bx + cy + d. The gradient∇F is as follows:

∇F =

[
∂F/∂x
∂F/∂y

]
=

[
ay + b
ax + c

]
,

where a, b, c, d are real numbers. Since ∂F/∂x and ∂F/∂y are
linear functions, it is not possible to have a local maximum or min-
imum for finite values of x and y. Imposing ∇F = 0 one finds
the unique saddle point s for x = −c/a, and y = −b/a. More-
over, F is constant along the vertical line lx : x = −c/a, and the
horizontal line ly : y = −b/a. Since ∂F/∂x is not a function of
x the restriction F |y=const of F to any line parallel to the x axis
has constant gradient. The gradient of F |y=const on all the lines
above ly is anti-parallel to the gradient of F |y=const on all the lines
below ly (see Figure 6). Similarly, lx separates the vertical lines
where F |x=const has upward gradient from those with downward
gradient.
Fact 1. There is exactly one saddle points of F in the plane.
Fact 2.The functionF is constant on the linelx orthogonal to the
x and on the linely orthogonal to they axis, wherelx intersectsly
at the saddle points of F .
We analyze the restriction of F to axis aligned rectangles. Since F

7

Proceedings of IEEE Visualization 2002. Lawrence Livermore National Laboratory Technical Report UCRL-JC-149277

(a)

(c) (e)

(b)

(d)

minimum saddle maximum

Figure 7: Possible configurations of split tree for a trilinear inter-
polant restricted to and axis aligned parallelepiped. One the left
of each tree there are one or two examples of corresponding paral-
lelepipeds. (a) One maximum. (b) Two maxima. (c) Three max-
ima. (d) Four maxima. (e) Split tree with four maxima that cannot
be constructed.

is linear along each line parallel to the coordinate axis, we can mark
each edge of a square with respect to the direction of increasing val-
ues of F . Figure 6(a) shows the three different types of squares that
one can have with respect to the orientation of their edges. A square
of type A has each pair of opposite edges with parallel orientation.
Therefore A cannot intersect lx or ly . This type of square has one
maximum AM and one minimum Am for F |A. A square of type
B has both pairs of opposite edges with anti-parallel orientation.
Therefore B intersects both lx and ly . The saddle point s must be
inside B because it is at the intersection between lx and ly . All four
vertices of B are extrema (two maxima and two minima) of F |B .
In the third type of square C, one pair of opposite edges are parallel
while the other pair are anti-parallel. Thus, C must intersect either
lx or ly , and F |C has one maximum and one minimum.
Fact 3. The bilinear functionF restricted to an axis aligned rectan-
gle can have only one or two maxima. The maxima can be located
only at non-adjacent vertices.
Figure 6(b) shows how the split trees of F |A and of F |C are both
single lines connecting the minimum to the maximum. The split
tree of F |B has one line that connects the lower minimum to the
saddle s. At s the split tree of F |B bifurcates into two lines con-
necting s to the two maxima.

Trilinear Interpolant on a Parallelepiped
We extend our analysis to the trilinear case and show how to com-
pute the shape of the split and merge trees for a cube on the basis
of the orientation of its edges and the function value of the eventual
body saddle points. The analytical formulation of the trilinear inter-
polant is F (x, y, z) = axyz+bxy+cxz+dyz+ex+gy+hz+k,
with gradient:

∇F =


 e + by + cz + ayz

g + bx + dz + axz
h + cx + dy + axy


 .

It is easy to see that restricting F to any plane orthogonal to a coor-
dinate axis yields the bilinear function discussed above. Therefore,
there is no local minimum or maximum of F . Solving∇F = 0 we
find two critical points of coordinates:

x=
d(ae−bc)±√∆

a(bc−ae)
, y=

c(ag−bd)±√∆

a(bd−ag)
, z=

b(ah−cd)±√∆

a(cd−ah)
,

where the term
√

∆ is either added in all expressions or subtracted
in all expressions, and ∆ = (bc − ae)(bd − ag)(cd − ah). These

(a) (b)

l1

l2

S1

S2

r

R1

R2

q

q1

q2
l′2

l′1

r′

M′
4

M′
2M′

3

M′
1

M3

M4

M2

M1

Figure 8: Impossible configurations that would be necessary to al-
low the construction of a Split Tree shown in Figure 7(e). (a) 3D
view. (b) projection onto the xy plane.

critical points are both saddles (of indices 1 and 2).
Fact 4.There are at most two critical points (both saddles) in F.
We next consider the restriction of F to an axis aligned paral-
lelepiped P and mark its edges with the direction of increasing F .
The restriction of F to any face of P is the bilinear interpolant dis-
cussed in the previous section, therefore facts 3 and 4 imply that
one can have maxima of F |P only at its vertices. Moreover, each
face of P can have only two maxima so that the greatest number
of maxima of F |P is four. Figure 7 shows the five distinct types of
Split Trees that can be built with up to four maxima. We show in
the following that the last type is not consistent with the topology
of the trilinear interpolant.
Fact 5.The Split Tree ofF |P cannot have the topology of Fig-
ure 7(e).
Proof: Assume that the tree of Figure 7(e) is a valid split tree
for some F |P with maxima M1, M2, M3 and M4. This means
that there exists an isovalue w such that the region of P with F
greater than w is partitioned into two connected components R1
(containing M1 and M2) and R2 (containing M3 and M4), as
shown in Figure 8(a). Since R1 is connected we can find a line l1
that connects M1 to M2 within R1. Similarly we find a line l2 that
connects M3 to M4 within R2.

Let’s call S1 the front square containing the maxima of R1, and
S2 the back square containing the maxima of R2 (S1 and S2 must
be opposite faces of P). We assume, without loss of generality, that
S1 and S2 are orthogonal to the z axis. We consider the parallel
projection P along the z axis, onto the xy plane. The images l′1, l′2
of l1, l2 must intersect in P ′ (projection of P) because they connect
the two pairs of vertices. Their intersection point r′ = l′1 ∩ l′2 is
the image of a ray r that is parallel to the axis z and that intersects
both l1 and l2 within P . By construction we have that F > w
for q1 = r ∩ l1 and for q2 = r ∩ l1. Moreover, since R1 is not
connected with R2, there must be a point q on r, between q1 and
q2, where F < w. Along r the value of F first decreases from
F (q1) to F (q), and then increases from F (q) to F (q2). But in a
trilinear function the value of F must be monotonic along any line
parallel to an orthogonal axis. Thus we have a contradiction, since
we have shown that F is not monotonic along r, which is parallel
to the z axis. �

In conclusion we can state the following:

Theorem 1 The topology of the Split Tree ofF |P is completely
determined by the count of its local maxima.

The important practical consequence of this theorem is that we
can precompute four templates of Split Trees, and for each element
in the mesh we select the appropriate template from the orientation
of the edges. Simple numerical computations allow one to deter-
mine the specific values of the saddles where the merge occurs.

8

